Exploring the Multidimensional Structure of the WASI-II: Further Insights from Schmid-Leiman Higher-Order and Exploratory Bifactor Solutions

Authors

  • Brittany McGeehan Texas Woman's University
  • Nadine Ndip Texas Woman's University
  • Ryan J. McGill The College of William and Mary

Abstract

The Wechsler Abbreviated Scale of Intelligence-Second Edition (WASI-II; Wechsler, 2011a) is a versatile and widely utilized brief intelligence measure by assessment psychologists in a variety of clinical settings. Despite the fact that a hierarchical measurement model is implied in the WASI-II Manual (Wechsler, 2011b) and the scores provided by the instrument, a hierarchical measurement model was not specified in the structural validation studies conducted by the test publisher. Due to this shortcoming, two exploratory factor analytic methods (Schmid-Leiman [SL] and exploratory bifactor analysis [EBFA]) were utilized to disclose the higher-order structuring of WASI-II variables. Results from both solutions indicated that the WASI-II provides users with strong measurement of general intelligence and suggest caution when interpreting beyond that dimension despite the provision of additional factor-level indices. Implications for clinical interpretation and appropriate use(s) of the WASI-II and other related brief measures is discussed.

Author Biographies

Brittany McGeehan, Texas Woman's University

Instructor of Psychology Department of Psychology and Philosophy

Nadine Ndip, Texas Woman's University

Doctoral Candidate Department of Psychology and Philosophy

Ryan J. McGill, The College of William and Mary

Assistant Professor of School Psychology Director, School Psychology Program School of Education

References

American Educational Research Association, American Psychological Association, & National Council on Measurement on Education (2014). Standards for educational and psychological testing. Washington, DC: American Educational Research Association.

Axelrod, B. N. (2002). Validity of the Wechsler Abbreviated Scale of Intelligence and other very short forms of estimating intellectual functioning. Assessment, 9, 17-23. doi: 10.1177/1073191102009001003

Beaujean, A. A. (2015). John Carroll’s views on intelligence: Bi-factor vs. higher-order models. Journal of Intelligence, 3, 121-136. doi: 10.3390/jintelligence3040121

Beaujean, A. A., McGlaughlin, & Margulies, A. S. (2009). Factorial validity of the Reynolds Intellectual Assessment Scales for referred students. Psychology in the Schools, 46, 932-950. doi: 10.1002/pits.20435

Beaujean, A. A., Parkin, J., & Parker, S. (2014). Comparing Cattell-Horn-Carroll factor models: Differences between bifactor and higher order factor models in predicting language achievement. Psychological Assessment, 26, 789-805. doi: 10.1037/a0036745

Beal, A. L., Willis, J. O., & Dumont, R. (2013). Psychological testing by models of cognitive ability. In D. H. Saklofske, C. R. Reynolds, & V. L. Schwean (Eds.), The oxford handbook of child psychological assessment (pp. 445-473). New York: Oxford University Press.

Brown, T. A. (2016). Confirmatory factor analysis for applied research (2nd ed.). New York: Guilford Press.

Canivez, G. L. (2016). Bifactor modeling in construct validation of multifactored tests: Implications for understanding multidimensional constructs and test interpretation. In K. Schweizer & C. DiStefano (Eds.), Principles and methods of test construction: Standards and recent advancements (pp. 247-271). Gottingen, Germany: Hogrefe.

Canivez, G. L. (2013). Psychometric versus actuarial interpretation of intelligence and related aptitude batteries. In D. H. Saklofske, C. R. Reynolds, & V. L. Schwean (Eds.). The Oxford handbook of child psychological assessment (pp. 84-112). New York: Oxford University Press.

Canivez, G. L., Konold, T. R., Collins, J. M., & Wilson, G. (2009). Construct validity of the Wechsler Abbreviated Scale of Intelligence and Wide Range Intelligence Test. School Psychology Quarterly, 24, 252-265. doi: 10.1037/a0018030

Canivez, G. L., & McGill, R. J. (2016). Factor structure of the Differential Ability Scales-Second Edition: Exploratory and hierarchical factor analyses with the core subtests. Psychological Assessment. Advance online publication. doi: 10.1037/pas0000279

Canivez, G. L., & Watkins, M. W. (2010). Investigation of the factor structure of the Wechsler Adult Intelligence Scale-Fourth Edition (WAIS-IV): Exploratory and higher-order factor analyses. Psychological Assessment, 22, 827-836. doi: 10.1037/a0020429

Canivez, G. L., Watkins, M. W., & Dombrowski, S. C. (2016a). Structural validity of the Wechsler Intelligence Scale for Children-Fifth Edition: Confirmatory factor analyses with the 16 primary and secondary subtests. Psychological Assessment. Advance online publication. doi: 10.1037/pas0000358

Canivez, G. L., Watkins, M. W., & Dombrowski, S. C. (2016b). Factor structure of the Wechsler Intelligence Scale for Children-Fifth Edition: Exploratory factor analyses with the 16 primary and secondary subtests. Psychological Assessment, 28, 975-986. doi: 10.1037/pas0000238

Carretta, T. R., & Ree, J. J. (2001). Pitfalls of ability research. International Journal of Selection and Assessment, 9, 325-335. doi: 10.1111/1468-2389.00184

Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. New York: Cambridge University Press.

Carroll, J. B. (1995). On methodology in the study of cognitive abilities. Multivariate Behavioral Research, 30, 429-452. doi: 10.1207/s15327906mbr3003_6

Carroll, J. B. (2003). The higher-stratum structure of cognitive abilities: Current evidence supports g and about ten broad factors. In H. Nyborg (Ed.), The scientific study of general intelligence: Tribute to Arthur R. Jensen (pp. 5-21). New York: Pergamon.

Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1, 245-276. doi: 10.1207/s15327906mbr0102_10

Chen, F. F., Hayes, A., Carver, C. S., Laurenceau, J. P., & Zhang, Z. (2012). Modeling general and specific variance in multifaceted constructs: A comparison of the bifactor model to other approaches. Journal of Personality, 80, 219-251. doi:10.1111/j.1467 6494.2011.00739.x

de Winter, J. C. F., & Dodou, D. (2012). Factor recovery by principle axis factoring and maximum likelihood factor analysis as a function of factor pattern and sample size. Journal of Applied Statistics, 39, 695-710. Doi: 10.1080/02664763.2011.610445

Dombrowski, S. C. (2013). Investigating the structure of the WJ-III Cognitive at school age. School Psychology Quarterly, 28, 154-169. doi: 10.1037/spq0000010

Dombrowski, S. C. (2014). Investigating the structure of the WJ-III Cognitive in early school age through two exploratory bifactor analysis procedures. Journal of Psychoeducational Assessment, 32, 483-494. doi: 10.1177/0734282914530838

Dombrowski, S. C., Canivez, G. L., Watkins, M. W., & Beaujean, A. (2015). Exploratory bifactor analysis of the Wechsler Intelligence Scale for Children-Fifth Edition with the 16 primary and secondary subtests. Intelligence, 53, 194-201. doi: 10.1016/j.intell.2015.10.009

Dombrowski, S. C., McGill, R. J., & Canivez, G. L. (2016). Exploratory and hierarchical factor analysis of the WJ IV Cognitive at school age. Psychological Assessment. Advance online publication. doi: 10.1037/pas0000350

Dombrowski, S. C., & Mrazik, M. (2008). Test review: Reynolds Intellectual Assessment Scales. Canadian Journal of School Psychology, 23, 223-230. doi: 10.1177/0829573508324458

Dombrowski, S. C., Watkins, M. W., & Brogan, M. J. (2009). An exploratory investigation of the factor structure of the Reynolds Intellectual Assessment Scales (RIAS). Journal of Psychoeducational Assessment, 27, 494-507. doi: 10.1177/0734282909333179

Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4, 272-299. doi: 10.1037/1082-989X.4.3.272

Floyd, R. G., Clark, M. H., & Shadish, W. R. (2008). The exchangeability of IQs: Implications for professional psychology. Professional Psychology: Research and Practice, 39, 414-423. doi: 10.1037/0735-7028.39.4.414

Frazier, T. W., & Youngstrom, E. A. (2007). Historical increase in the number of factors measured by commercial tests of cognitive ability: Are we overfactoring? Intelligence, 35, 169-182. doi: 10.1016/j.intell.2006.07.002

Gignac, G. E. (2007). Multi-factor modeling in individual differences research: Some recommendations and suggestions. Personality and Individual Differences, 42, 37-48. doi: 0.1016/j.paid.2006.06.019

Gignac, G. E. (2016). The higher-order model imposes a proportionality constraint: That is why the bi-factor model tends to fit better. Intelligence, 55, 57-68. doi: 10.1016/j.intell.2016.01.006

Gignac, G. E., & Watkins, M. W. (2013). Bifactor modeling and the estimation of model-based reliability in the WAIS–IV. Multivariate Behavioral Research, 48, 639-662. doi:10.1080/00273171.2013.804398

Glutting, J., Adams, W., & Sheslow, D. (2000). Wide Range Intelligence Test. Wilmington, DE: Wide Range.

Glutting, J. J., Watkins, M. W., & Youngstrom, E. A. (2003). Multifactored and cross-battery assessments: Are they worth the effort? In C. R. Reynolds & R. W. Kamphaus (Eds.), Handbook of psychological and educational assessment of children: Intelligence aptitude, and achievement (2nd ed., pp. 343-374). New York: Guilford.

Gorsuch, R. L. (1983). Factor analysis (2nd ed.). Hillsdale, NJ: Erlbaum.

Groth-Marat, G. (2009). Handbook of psychological assessment (5th ed.). Hoboken, NJ: John Wiley.

Gustaffson, J. E., & A ̇berg-Bengtsen, L. (2010). Unidimensionality and interpretability of psychological instruments. In S. E. Embretson (Ed.), Measuring psychological constructs: Advances in model-based approaches (pp. 97-122). Washington, DC: American Psychological Association.

Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychomerika, 30, 179-185. doi: 10.1007/BF02289447

Jennrich, R. I., & Bentler, P. M. (2011). Exploratory bi-factor analysis. Psychometrika, 76, 537-549. doi: 10.1007/s11336-011-9218-4

Johnson, K. M., & Sandoval, J. (2014). Wechsler Abbreviated Scale of Intelligence-Second Edition. In J. F. Carlson, Geisinger, K. F., & Jonson, J. L. (Eds.), The nineteenth mental measurements yearbook (pp. 1-7). Lincoln, NE: Buros Institute of Mental Measurement.

Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39, 31-36. doi: 10.1007/BF02291575

Kane, M. T. (2013). Validating the interpretations and uses of test scores. Journal of Educational Measurement, 50, 1-73. doi: 10.1111/jedm.12000

Kaufman, A. S., & Kaufman, N. L. (2004). Kaufman Brief Intelligence Test (2nd ed.). Circle Pines, MN: American Guidance Service.

Kaufman, J. C., & Kaufman, A. S. (2001). Time for the changing of the guard: A farewell to short forms of intelligence tests. Journal of Psychoeducational Assessment, 19, 245-267. doi: 10.1177/073428290101900305

Keith, T. Z., Caemmerer, J. M., & Reynolds, M. R. (2016). Comparison of methods for factor extraction for cognitive test-like data: Which overfactor, which underfactor? Intelligence, 54, 37-54. doi: 10.1016/j.intell.2015.11.003

Kranzler, J. H., & Keith, T. Z. (1999). Independent confirmatory factor analysis of the Cognitive Assessment System (CAS): What does the CAS measure? School Psychology Review, 28, 117-144. Retrieved from http://www.nasponline.org

McClain, A. L. (1996). Hierarchical analytic methods that yield different perspectives on dynamics: Aids to interpretation. Advances in Social Science Methodology, 4, 229-240.

McCrimmon, A. W., & Smith, A. D. (2013). Review of the Wechsler Abbreviated Scale of Intelligence, Second Edition (WASI-II). Journal of Psychoeducational Assessment, 31, 337-341. doi: 10.1177/0734282912467756

McDonald, R. P. (1999). Test theory: A unified treatment. Mahwah, NJ: Erlbaum.

McGill, R. J. (2016). Investigating the factor structure of the Comprehensive Test of Nonverbal Intelligence-Second Edition (CTONI-2) using exploratory factor analysis. Journal of Psychoeducational Assessment, 34, 339-350. doi: 10.1177/0734282915610717

McGill, R. J., & Canivez, G. L. (2016). Orthogonal higher order structure of the WISC–IV Spanish using hierarchical exploratory factor analytic procedures. Journal of Psychoeducational Assessment, 34, 600-606. doi: 10.1177/0734282915624293

McGill, R. J., & Spurgin, A. R. (2015). Exploratory higher order analysis of the Luria interpretive model on the Kaufman Assessment Battery for Children-Second Edition (KABC-II) school-age battery. Assessment. Advance online publication. doi: 10.1177/1073191115614081

Murray, A. L., & Johnson, W. (2013). The limitations of model fit in comparing the bi-factor versus higher-order models of human cognitive ability structure. Intelligence, 37, 487-494. doi: 10.1016/j.intell.2013.06.004

Nelson, J. M., & Canivez, G. L. (2012). Examination of the structural, convergent, and incremental validity of the Reynolds Intellectual Assessment Scales (RIAS) with a clinical sample. Psychological Assessment, 24, 129-140. doi: 10.1037/a0024878

Nelson, J. M, Canivez, G. L, Lindstrom, W., & Hatt, C. (2007). Higher-order exploratory factor analysis of the Reynolds Intellectual Assessment Scales with a referred sample. Journal of School Psychology, 45, 439-456. doi: 10.1016/j.jsp.2007.03.003

Pierson, E. E., Kilmer, L. M., Rothlisberg, B. A., & McIntosh, D. E. (2012). Use of brief intelligence tests in the identification of giftedness. Journal of Psychoeducational Assessment, 30, 10-24. doi: 177/0734282911428193

Preacher, K. J., & MacCallum, R. C. (2003). Repairing Tom Swift’s electric factor analysis machine. Understanding Statistics, 2, 13-43. doi: 10.1207/S15328031US0201_02

R Developmental Core Team (2016). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Reise, S. P. (2012). The rediscovery of bifactor measurement models. Multivariate Behavioral Research, 47, 667-696. doi: 10.1080/00273171.2012.715555

Reise, S. P., Bonifay, W. E., & Haviland, M. G. (2013). Scoring and modeling psychological measures in the presence of multidimensionality. Journal of Personality Assessment, 95, 129-140. doi:10.1080/00223891.2012.725437

Reynolds, C. R., & Kamphaus, R. W. (2003). Reynolds Intellectual Assessment Scales professional manual. Lutz, FL: Psychological Assessment Resources.

Reynolds, C. R., & Kamphaus, R. W. (2015). Reynolds Intellectual Assessment Scales (2nd ed.). Lutz, FL: Psychological Assessment Resources.

Reynolds, C. R., Kamphaus, R. W., & Raines, T. C. (2012). The Reynolds Intellectual Assessment Scales and the Reynolds Intellectual Screening test. In D. P. Flanagan & P. L. Harrison (Eds.), Contemporary intellectual assessment: Theories, tests, and issues (3rd ed.; pp. 400-421). New York: Guilford.

Reynolds, M. R., & T. Z. Keith (2013). Measurement and statistical issues in child assessment research. In D. H. Saklofske, C. R. Reynolds, & V. L. Schwean (Eds.). The Oxford handbook of child psychological assessment (pp. 48-83). New York: Oxford University Press.

Revelle, W. (2016). Psych: Procedures for psychological, psychometric, and personality research (version 1.6.9) [Computer Software]. Evanston, IL: Northwestern University.

Rodriguez, A., Reise, S. P., & Haviland, M. G. (2016). Applying bifactor statistical indices in the evaluation of psychological measures. Journal of Personality Assessment, 98, 223-237.

doi: 10.1080/00223891.2015.1089249

Ryan, J. J., Carruthers, C. A., Miller, L. J., Souheaver, G. T., Gontkovsky, S. T., & Zehr, M. D. (2010). Exploratory factor analysis of the Wechsler Abbreviated Scale of Intelligence (WASI) in adult standardization and clinical samples. Applied Neuropsychology: Adult, 10, 252-256. Doi: 10.1207/s15324826an1004_8

Sattler, J. M. (2008). Assessment of children: Cognitive foundations (5th ed.). La Mesa, CA: Sattler Publishing.

Schmid, J., & Leiman, J. M. (1957). The development of hierarchical factor solutions. Psychometrika, 22, 53-61. doi: 10.1007/BF02289209

Silverstein, A. B. (1990). Short forms of individual intelligence tests. Psychological Assessment, 2, 3-11. doi: 10.1037/1040-3590.2.1.3

Thompson, B. (2004). Exploratory and confirmatory factor analysis: Understanding concepts and applications. Washington, DC: American Psychological Association.

Thompson, B., & Daniel, L. G. (1996). Factor analytic evidence for the construct validity of scores: A historical overview and some guidelines. Educational and Psychological Measurement, 56, 197-208. doi: 10.1177/0013164496056002001

Velicer, W. F. (1976). Determining the number of components from the matrix of partial correlations. Psychometrika, 31, 321-327. doi: 10.1007/BF02293557

Velicer, W. F., Eaton, C. A., & Fava, J. L. (2000). Construct explication through factor or component analysis: A view and evaluation of alternative procedures for determining the number of factors or components. In R. D. Gofï¬n & E. Helmes (Eds.), Problems and

solutions in human assessment: A festschrift to Douglas Jackson at seventy (pp. 41-71). Norwell, MA: Kluwer Academic.

Watkins, M. W. (2006). Orthogonal higher order structure of the Wechsler Intelligence Scale for Children-Fourth Edition. Psychological Assessment, 18, 123-125. doi: 10.1037/1040-3590.18.1.123

Watkins, M. W. (2013). Omega. [Computer Software]. Phoenix, AZ: Ed & Psych Associates.

Wechsler, D. (2011a). Wechsler Abbreviated Scale of Intelligence (2nd ed.). Bloomington, MN: Pearson.

Wechsler, D. (2011b). Wechsler Abbreviated Scale of Intelligence—Second Edition manual. Bloomington, MN: Pearson.

Weiner, I. B. (1989). On competence and ethicality in psychodiagnostic assessment. Journal of Personality Assessment, 53, 827-831. doi:10.1207/s15327752jpa5304_18

Wood, J. M., Tatryn, D. J., & Gorsuch, R. L. (1996). Effects of under- and overextraction on principal axis factor analysis with varimax rotation. Psychological Methods, 1, 354-365. doi: 10.1037/1082-989X.1.4.354

Woodcock, R. W., McGrew, K. S., & Mather, N. (2011). Woodcock-Johnson III Tests of Cognitive Abilities. Itasca, IL: Riverside.

Yates, B. T., & Taub, J. (2003). Assessing the costs, benefits, cost-effectiveness, and cost-benefit of psychological assessment: We should, we can, and here’s how. Psychological Assessment, 15, 478-495. doi: 10.1037/1040-3590.15.4.478

Youngstrom, E. A. (2008). Commentary: Evidence-based assessment is not evidence-based medicine—Commentary on evidence-based assessment of cognitive functioning in pediatric psychology. Journal of Pediatric Psychology, 33, 1015-1020. doi: 10.1093/jpepsy/jsn060

Downloads

Published

2017-02-12